

Liberté Égalité Fraternité

Les avancées de la spermatogenèse in vitro en 2023

Dr Christine Rondanino

Unité Inserm U1239 – Equipe « Physiopathologie surrénalienne et gonadique » Institut de Recherche et d'Innovation Biomédicale Laboratoire de Biologie de la Reproduction, CHU – Hôpitaux de Rouen Directeur : Pr Nathalie RIVES

Préservation et restauration de la fertilité

Stratégies de restauration de la fertilité

Suspension de cellules testiculaires

Tubes séminifères

Tissu testiculaire prépubère

Stratégies de restauration de la fertilité

Stratégies de restauration de la fertilité

Adapté de Dores et al., 2012

Culture 2D de cellules testiculaires d'agneaux

Après 4 semaines

- Production de « sperm-like cells » haploïdes
- Obtention d'embryons au stade morula

Deng et al., 2016

Culture 3D de cellules testiculaires de souris et de macaque rhésus

Après 30 jours (SACS) Souris : production de spermatozoïdes

Abu Elhija et al., 2012

Après 30 jours (MCS) Macaque rhésus : Marqueurs méiotique et post-méiotique

Huleihel et al., 2015

Culture 3D de cellules testiculaires de souris

Après 48 jours

Production de spermatides rondes et allongées

Richer et al., 2021

Après 42 jours

Production de cellules méiotiques

Après 30 jours

Production de cellules post-méiotiques

Culture 3D de cellules testiculaires de souris

Matrice extracellulaire imprimée en 3D

Bashiri *et al*., 2022

Culture de tubes séminifères de rats

Production de « sperm-like cells »

Perrard et al., 2016

Culture de tissu testiculaire de souris

Steinberger & Steinberger, 1965

Sato et al., 2011

Tissu testiculaire de souris Gsg2-GFP

FBS : sérum de veau fœtal KSR : *knockout serum replacement*

Culture de tissu testiculaire de souris

Congélation lente : ROSI

Vitrification : ICSI

275

- Production de spermatozoïdes haploïdes
- Obtention de descendants viables et fertilesMéthylation de 11 DMRs

Sato *et al*., 2011 Yokonishi *et al*., 2014

CLC : congélation lente contrôlée VSS : vitrification sur surface solide

Dumont *et al.*, 2015

Impact de la chimiothérapie sur la spermatogenèse in vitro

- Dommages tissulaires ?
- Capacité des spermatogonies à se différencier ?

Impact de la vincristine et du cyclophosphamide sur la spermatogenèse *in vitro*

	70 tubes au	stade de di	nerenciation	le plus avalle
	NaCI 0,9%	VCR	СҮР	VCR+CYP
Aucune cellule germinale (Sertoli cell-only)	0	$1,7\pm1,7$	0	$1,7\pm1,0$
Spermatogonies	0	$\textbf{5,0} \pm \textbf{3,2}$	0	$\textbf{5,0} \pm \textbf{2,1}$
Spermatocytes leptotène/zygotène	$\textbf{5,0} \pm \textbf{2,9}$	$\textbf{10,8} \pm \textbf{4,6}$	$\textbf{9,2}\pm\textbf{0,8}$	$\textbf{5,0} \pm \textbf{1,7}$
Spermatocytes pachytène	$\textbf{38,3} \pm \textbf{4,0}$	$\textbf{44,2} \pm \textbf{5,8}$	$\textbf{36,7} \pm \textbf{0,0}$	$\textbf{45,0} \pm \textbf{4,8}$
Spermatides rondes	$\textbf{29,2} \pm \textbf{2,5}$	$\textbf{20,8} \pm \textbf{6,4}$	$\textbf{29,2} \pm \textbf{2,8}$	$\textbf{22,5} \pm \textbf{6,4}$
Spermatides allongées	$\textbf{27,5} \pm \textbf{2,8}$	$\textbf{17,5} \pm \textbf{2,5}$	$\textbf{25,0} \pm \textbf{2,8}$	$\textbf{20,8} \pm \textbf{13,1}$

% tubes au stade de différenciation le plus avancé

VCR / CYP / CYP+VCR : spermatogenèse in vitro complète

Delessard et al., 2022

Qualité nucléaire des spermatozoïdes produits in vitro

	Haploïdie (%)	Ratio X8/Y8	Aneuploïdie (%)	Diploïdie (%)	Anomalies chromosomiques (%)
In vivo 36,5 jpp	91,45 ± 1,50	1,06 ± 0,09	5,79 ± 0,80	0,15 ± 0,15	5,95 ± 0,84
Frais J30	94,06	1,11	3,96	0	3,96
CLC J30	92,16	1,24	3,92	0	3,92
VSS J30	93,46	1,22	3,74	0	3,74

- Majorité de spermatozoïdes
 - haploïdes
 - chromatine condensée
 - ADN non fragmenté
 - ADN non oxydé
- 1 % de spermatozoïdes 8-OHdG+ dans les tissus décongelés

Oblette et al., 2017

Modifications épigénétiques dans la lignée germinale : modifications post-traductionnelles des histones

- Expression de gènes codant des enzymes de modification des histones
- Présence des histones H3K4me3, H3K9ac et H4K8ac

Oblette et al., 2019

RÉPUBLIQUE FRANÇAISE Librit Française Librit Française Diomédecine

Modifications épigénétiques dans la lignée germinale : méthylation de l'ADN

- Expression des ADN méthyltransférases DNMT1 et DNMT3a
- Présence de la marque épigénétique 5mC (5-méthylcytosine)

Oblette et al., 2019

Développement embryonnaire après ICSI

Immunofluorescence : 5mC, 5hmC, H3K4me3, H3K27me3, H3K9ac

Oblette *et al.*, 2021

Développement embryonnaire après ICSI

	Taux de fécondation (%)	Taux de clivage (%)	Embryons 4 cellules (%)	Morula (%)	Blastocystes (%)	Taux de blastulation (%)
In vivo*	-	91,5 ± 4,9	97,2 ± 1,8	91,9 ± 4,1	79,7 ± 9,6	61,5 ± 11,2
ICSI In vivo	49,9 ± 3,4	79,6 ± 5,2	64,0 ^a ± 8,6	65,7ª ± 11,9	66,9 ± 10,4	24,4ª ± 6,7
ICSI Frais	46,4 ± 3,0	76,1 ± 3,9	68,1 ^a ± 6,5	$68,2^{a} \pm 7,7$	60,1 ± 11,6	15,9 ^a ± 4,3
	37,9 ^b ± 4,5	76,0 ± 6,8	$63,3^{a} \pm 9,9$	n.d.	n.d.	n.d.

a : *P* < 0,05 comparé à *In vivo**

b : P < 0,05 comparé à ICSI In vivo

n.d.: non déterminé

ICSI CLC : \downarrow taux de fécondation

RÉPUBLIQUE FRANÇAISE Libriti Ventriti

Séminaire « Préservation de la fertilité chez les patients atteints d'un cancer : quelles priorités pour la recherche ? »

Oblette *et al*., 2021

Modifications épigénétiques dans les embryons issus d'ICSI

5mC/5hmC

- Impact sur la méthylation et déméthylation de l'ADN au cours du développement embryonnaire précoce
- Aucun impact sur les histones H3K4me3, H3K27me3 et H3K9ac

Oblette et al., 2021

Culture organotypique : supplémentations des milieux de culture

• Vitamine A (Arkoun et al., 2015; Dumont et al., 2016)

- Vitamine E (Arkoun et al., 2019)
- KSR vs Albumax ± agitation constante (Nakamura et al., 2017)
- Mélatonine ± Glutamax (Reda et al., 2017)
- Acide rétinoïque, FSH, LH, T3, testostérone (Arkoun et al., 2015 ; Sanjo et al., 2018, 2020)

RÉPUBLIQUE FRANÇAISE Libre Française Diomédecine

Analyses transcriptomiques des tissus maturés in vitro

Profil transcriptomique différent des tissus maturés in vivo

- Diminution de l'expression d'Igf-1 (Yao et al., 2017)
- Altération de la progression méiotique (Abe et al., 2020 ; Saulnier et al., 2022 ; Dumont et al., 2023)
- Anomalie de formation du complexe synaptonémal (Saulnier et al., 2022)
- Réaction inflammatoire (Abe et al., 2020 ; Suzuki et al., 2021 ; Saulnier et al., 2022; Dumont et al., 2023)
- Altération de la stéroïdogenèse (Saulnier et al., 2022 ; Dumont et al., 2023)

Modification du système de culture organotypique

- Meilleure diffusion de l'oxygène et des nutriments
- Absence de zone nécrotique centrale
- Croissance tissulaire
- Meilleur rendement de la spermatogenèse in vitro chez la souris

Kojima *et al*., 2018 Komeya *et al*., 2019

Systèmes de culture microfluidique

Tissu testiculaire de souris prépubère

Interphase gaz-liquide Système microfluidique

- Absence de zone nécrotique centrale
- Maintien de la spermatogenèse pendant 6 mois
- Descendance viable et fertile

Komeya *et al*., 2016 Komeya *et al*., 2017 Yamanaka *et al*., 2018

Système de culture en bioréacteur à perfusion

- Production de « sperm-like cells »
- Maintien de la spermatogenèse in vitro pendant 8 semaines

Amirkhani et al., 2022

Comparaison de différents systèmes de culture

PDMS, Polydimethylsiloxane; PTFE, Polytetrafluoroethylene, Scale bars = 2 mm.

Culture de tissu testiculaire de porcs prépubères :

- Fonctionnalité des cellules de Leydig
- Production de cellules méiotiques et post-méiotiques
- Meilleur rendement de la spermatogenèse *in vitro* avec une plaque de PDMS

Kambar et al., 2022

Après 30 jours

Culture 3D de cellules testiculaires de garçons prépubères

MCS : Methylcellulose Culture System

Table 1. Summary of clinical data relate to prepubertal patient boys.

Patient #	Age (Y)	Diagnosis	Treatment history and accumulative dosage	Duration of chemo treatment	Time lapse between last chemo and surgery	Johnsen's score	Tanner stage
1	6	Acute Promyelocytic Leukaemia (APML)	Chemotherapy + ATRA [Etoposide,450 mg; Idarubicin, 61 mg; Mitoxantrone, 20 mg; Cytosar (3 months), 13400 mg; ATRA) 3 years), Cytozar [IT]]	3M	5Y	ND	1
2	6	Acute lymphoblastic leukemia (ALL)	Chemotherapy (BFM ALL 2009 protocol) [Frednizon/Dexcorate (4 months), Vincristin (3 months), 15.1 mg; Daunotubicin (3 months), 188.9 mg; Aspargenase, 6297.2 mg; Cyclophosphamide (3 months), 5 g; Ephosphomide, 5 g; Cytozar (3	4M	1M	4	1
3	7	Acute lymphoblastic leukemia (ALL)	Chemotherapy (BFM ALL 2009 protocol) (Daunorubicin, 60 mg: Vincristin, 12 mg; Ducsorubicin, 120 mg; Methotrixane, 20 g; Cyclophosphamide, 3 g; L-Asparginz, 120000 Units, Cytozar, 1800 mg; Lanbis, 840 mg; Purinetol, 3080 mg; Ferdnizon, 1800 mg; Dexamrthasone, 236 mg)	30M	1M	4	T
4	10	Acute lymphoblastic leukemia (ALL)	Chemotherapy (BFM ALL 2009 protocol) [Deonorubicin (6 months), 240 mg; Edrubicine, 24 mg; Cyclophosphamide (6 months), 8400 mg; Peg-Aspargenase (7 months), 5000 Units; Arabinase, 200000 Units; Methorikate [3 months), 5000 units; Arabinase (7 months)	31M	1M	ND	
5	13	Acute lymphoblastic leukemia (ALL)	Chemotherapy (BFM ALL 2009 protocol) (Predinisone, 2340 mg; Vincistine, 15.5 mg; Daunorubicine, 156 mg: L-Aparginase, 156000 Units; Cycophopyhamide, 3-9 g; Cytarabine, 2340 mg; Mercaptopurine, 39650 mg; Methotrexate N, 26 g; Methotrexate PO, 2184 mg; Dexamethasone, 325 mg; Doxorubicine, 156 mg; Thioguanine, 1092 mg)	29M	1M	ND	III-IV
6	6	Medulloblastoma (MD)	Chemotherapy (Vincristine), Cranial-Spinal Radiation (Gy 23.4), Vincristine, 1.5 mg.	Once	2M	5	1
7	9	Rhabdomyosarco ma (recurrent)	Chemotherapy, Radiation (Vincristine, 1.5 mg, Actinomycin, 15 µg; Cytoxan (all for 8 months), 25 mg; VP16, 500 mg; Ifosfamide, 10 g; Doxorubicin) and auto stem cell transplantation (Thiotepa, 720 mg; melphalan, 180 mg; Carboplatin, 2 g).	10M	8M	ND	1
8	7	Beta-Thalassemia Major (THA)	None	None	None	ND	1

Après 15 semaines

Expression de marqueurs méiotique et post-méiotique

Abofoul-Azab et al., 2018

Après 14 et 70 jours

Survie des spermatogonies

Medrano et al., 2018

Après 5 semaines

Survie des spermatogonies Fonctionnalité des cellules de Leydig

Portela et al., 2019

Après 3 semaines

Survie des spermatogonies Fonctionnalité des cellules de Leydig

Aden et al., 2023

Après 8 semaines

Production de spermatocytes Maturation des cellules de Sertoli Fonctionnalité des cellules de Leydig

Wang et al., 2022

Culture sur inserts de tissu testiculaire de garçons prépubères

- Préservation de l'intégrité des tubes séminifères
- Survie des spermatogonies

Après 139 jours

- Maturation des cellules de Sertoli et de Leydig
- Mise en place de la barrière hémato-testiculaire

de Michele et al., 2017, 2018

Culture sur inserts de tissu testiculaire de garçons prépubères

- Production de cellules méiotiques et post-méiotiques après 16 jours de culture
- Production de cellules haploïdes

de Michele *et al.*, 2018

RÉPUBLIQUE FRANÇAISE Libriti Venerritit

Obstacles - Défis à relever

Protocoles à optimiser

- Se rapprocher des conditions physiologiques
- Augmenter le rendement de la spermatogenèse *in vitro* dans les modèles animaux

Application humaine

Réussir à générer des spermatozoïdes humains in vitro

Mesures de sécurité et préoccupations éthiques

- Sécurité de la procédure
- Qualité des spermatozoïdes
- Descendance dans les modèles animaux : effets inter/transgénérationnels ?
- Génération d'embryons humains à partir de spermatozoïdes produits *in vitro*

- Meilleure connaissance des mécanismes moléculaires
 - Supplémentation des milieux de culture
 - Amélioration des systèmes de culture

- Meilleure connaissance des mécanismes moléculaires
- Adaptation du protocole à l'âge du patient
- Protocole exempt de xéno-contaminants
 - Génome et épigénome des spermatozoïdes et de la descendance
 - Développement et santé de la descendance

Merci de votre attention

- Pr Nathalie Rives Dr Ludovic Dumont Dr Magali Basille-Dugay Dr Aurélie Feraille Dr Marion Delessard Dr Fanny Jumeau Dr François Fraissinet Laura Moutard Frédérique Bateux Louise Huber
- Pr Bertrand Macé Dr Jean-Pierre Milazzo Dr Albanne Travers Dr Brahim Arkoun Dr Antoine Oblette Dr Justine Saulnier Dr Ahmed Maouche Dr Julie Rondeaux Dr France Verhaeghe Dr Benoît Berby
- Amandine Bironneau Donovan Liot Véronique Duchesne Agathe Way Laura Stalin Mathilde Soirey

